Game Theory and Public Policy
Show Less

Game Theory and Public Policy

Roger A. McCain

Game theory is useful in understanding collective human activity as the outcome of interactive decisions. In recent years it has become a more prominent aspect of research and applications in public policy disciplines such as economics, philosophy, management and political science, and in work within public policy itself. Here Roger McCain makes use of the analytical tools of game theory with the pragmatic purpose of identifying problems and exploring potential solutions in public policy.
Buy Book in Print
Show Summary Details
You do not have access to this content

Chapter 4: Nash Equilibrium and Public Policy

Roger A. McCain


4. Nash equilibrium and public policy The best-known ideas in game theory are within non-cooperative game theory, and probably the single best-known example in game theory is the Prisoner’s Dilemma, a non-cooperative example. This example shows how interactive self-interested decisions may lead to results that are less favorable to all participants than some other outcome would be. The Prisoner’s Dilemma example can be generalized to a class of non-cooperative normal form games known as “social dilemmas” (Dawes, 1980) that share similar broad qualities. From the pragmatic point of view, non-cooperative game theory provides powerful tools for the identification and specification of problems, as the social dilemmas exemplify. On the whole, moreover, noncooperative game theory is a relatively settled, mature study. Social dilemmas are a class of Nash equilibrium models, and Nash equilibria are well understood and the foundation of most applications of non-cooperative game theory. However, there are some unsettled issues and some other proposed approaches to the solution of non-cooperative games. This chapter will review a number of Nash equilibrium models with a view to their applicability to public policy studies. 4.1 SOCIAL DILEMMAS While the Prisoner’s Dilemma is the best-known example in game theory, it is also one of the simplest, and its simplicity does place some limits on its application. 4.1.1 Symmetrical Dilemmas The Prisoner’s Dilemma begins with a story of interrogation. For this discussion, we may instead recall the Water Game from Chapter 2, where it is shown in normal form as Table 2.1. Eastland knows...

You are not authenticated to view the full text of this chapter or article.

Elgaronline requires a subscription or purchase to access the full text of books or journals. Please login through your library system or with your personal username and password on the homepage.

Non-subscribers can freely search the site, view abstracts/ extracts and download selected front matter and introductory chapters for personal use.

Your library may not have purchased all subject areas. If you are authenticated and think you should have access to this title, please contact your librarian.

Further information

or login to access all content.