Chapter 19: Complex scenarios in socio-economic data: a comprehensive analytical study
Restricted access

The socio-economic scenario of a country reflects its social, economic, political, ideological, ethical, cultural, or communicative habits, making its proper analysis for different countries quite challenging. Complexity science has provided some new methods and tools for dealing with this challenge. Country-level Gross Domestic Product (GDP) and population are the two most important issues in the socio-economic context. In order to show the effectiveness of different nonlinear tools in analysing socio-economic data, the authors implemented three popular nonlinear tools: recurrence rate, mean conditional recurrence (MCR) and complex networks (CN) to analyse country level GDP and population data to validate the derived results with the standard conclusions based on general theories of economics. recurrence rate is used to show how two non-identical systems get synchronized through their phase spaces. MCR detects the driver and response system in synchronized states and CN reflects the overall scenarios of the complex systems by its various statistical measures.

You are not authenticated to view the full text of this chapter or article.

Access options

Get access to the full article by using one of the access options below.

Other access options

Redeem Token

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institutional Access

Personal login

Log in with your Elgar Online account

Login with you Elgar account
Handbook